Carlos González

 Estructura y Función de Sensores Moleculares

Full Professor Universidad de Valparaíso
Adjunct Professor of Texas Tech University, Texas, USA
Bsc & MSc in Biophysics: State University of Moscow, Russia
PhD in Mol. and Cell Biology & Neur. (in Biophysics), Universidad de Chile
Postdoctoral fellows: NIH, University of Virginia & University of Miami
Researcher: Centro Interdisciplinario de Neurociencia de Valparaíso
Editor Board Member of JBC
Deputy Director of Biophysics and Computational Biology PhD Program at University of Valparaíso

Curriculum Vitae


Contact information:

E-mail: carlos.gonzalezl at
Teléfono: (56)-(32)-299 5522
Fax: (56)-(32)-250 8047
Dirección: Centro Interdisciplinario de Neurociencia de Valparaíso.
Facultad de Ciencias, Universidad de Valparaíso.
Pasaje Harrington 269, Playa Ancha, Valparaíso. Chile.

Research Statement:

Our research aims to understand the molecular mechanisms underlying the way that different ion channels operate, using the combination of molecular biology, classic electrophysiology, fluorometry, kinetic modeling, molecular modeling, quantum mechanics and mathematical modeling, and  their association with some disseases like cancer, asthma and deafness.

Research Lines:

  1. Ion channel biophysics
  2. Channelopathies (Cancer, deafness, asthma)
  3. Physiology (Secretion)
  4. Computational modeling (Molecular modeling, kinetic modeling, molecular dynamics and quantum mechanics)
  5. Mathematical modeling (associated to the ion channel behaviour) 

 We have openings for PhD students with backgrounds in Biochemistry, Biology, Mathematics and Physics.

Hv1 Structural Model by Pupo & Gonzalez, PNAS 2014 . A probable interaction complex between 2GBI and the human Hv1 channel. 2GBI is docked against a homology model of the Hv1 channel based on the 4G7V_S template. 2GBI is represented by sticks with green carbon atoms and the Hv1 channel is represented by a cyan cartoon, with side chains of residues interacting with 2GBI represented as lines. From them, residues identified experimentally by Hong et al. (4) are labeled. This model is approximated and does not have further claims.


Research team:

Postdoctoral fellows

Amaury Pupo
Audry Fernandez
Isaac García
Karel Mena

PhD students

Bernardo Pinto
Emerson Carmona
Yenny Lorenzo

Graduate student

Antonio Peña 

Selected publications:

  • Qiu F, et al (2016) Molecular mechanism of Zn2+ inhibition of a voltage-gated proton channel. PNAS. USA. 113(40):E5962-E5971. IF: 9,423
  • Latorre R, et al (2016). Molecular determinants of BK channel functional diversity and functioning. Physiol Rev, 97(1):39-87. Review. IF: 30,924
  • Diaz-Franulic I, et al (2016) Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels Ann. Rev. Biophys. Jul 5;45:371-98 IF: 11,325
  • Castillo K, et al (2015) Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels..  PNAS USA. 112(15):4809-14 IF: 9,423
  • Pupo A & Gonzalez C. In pursuit of an inhibitory drug for the proton channel (Hv1). (2014) PNAS. USA. 11:27, 9673-74. IF: 9,423
  • Qiu F et al. (2013) The S4 voltage sensor movement that opens Hv proton channels. Neuron. 77(2), 288–98. IF: 13,974
  • Contreras GF, et al. (2012) Modulation of BK channel voltage gating by different auxiliary β subunits. PNAS.  IF:USA. 109(46):18991-18996. IF: 9,423
  • Gonzalez C, et al. Editing of human KV1.1 channel mRNAs disrupts binding of the N-terminus tip at the intracellular cavity. (2011Nature Commun. 2:436 IF: 11,329
  • Gonzalez C. et al. Strong cooperativity between subunits in voltage-gated proton channels. Nature Struct Mol Biol. (2010) Dec 20. 17(1):51-6 IF: 13,338
  • Gonzalez C, et al Permeation mechanism in voltage-activated proton channels: A new glimpse. PNAS. (2010). 107(5):1817-8. IF: 9,423
  • Osteen JD, et al (2010) KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. PNAS. USA. (2010). Dec 107(52):22710-5. IF: 9,423
  • DePuy SD, et al. The molecular basis for T-type Ca2+ channel inhibition by G-protein β2γ2 subunits (2006). PNAS USA. 103: 14590-5. IF: 9,423
  • Gonzalez C, et al S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels (2005). PNAS. USA. 102: 5020–25. IF: 9,423
  • Gonzalez C, et al. Periodic Perturbations in Shaker K+ Channel Gating Kinetics by Deletions in the S3-S4 Linker (2001). PNAS USA. 98: 9617-23. IF: 9,423